Broken Wire estimation

- Both estimations agree except for 12 cases
 - > Mostly ambiguous cases (11 out of 12)

-> One case where the wire broke halfway through

Interpoled Baseline

 Instead of using the average (green) between two cosmic runs, used a linear interpolation (blue)

Baseline subtracted currents

 As the broken wire estimation and the interpoled baseline currents are different, new baseline currents (left) are slightly different from the old ones (right):

```
386775
4.26567
1
386775
5.086

386776
4.21669
2
386776
5.032

386777
4.0077
3
386777
4.818

386825
7.37652
4
386825
7.946

386826
7.11453
5
386826
7.679
```

 But both methods (old one in pink and new one in black) are consistent with each other.

Comparing HV and data-driven methods

 The HV method's calculated efficiency considerably drops when the luminosity gets higher when the data-driven method's efficiency stays relatively stable.

 In most cases both method agree on the group efficiency « order » per panel (here, black is the closest group from the beam line and green is the furthest)

• But there are 24/60 panels where this isn't the case.

Y: Efficiency X: Luminosity